氮氧化物是造成大气污染和雾霾的主要成因,已被多家部门证实。从去年起我国北京、郑州、成都等地开展燃气锅炉低氮改造工程,并制定了燃气锅炉氮氧化物排放标准。
做为燃气锅炉**者的**企业--,在低氮燃气锅炉改造大潮中,敢为人先执着创新,凭借2大先进低氮技术,**市场鼎力推进大气污染治理。
敢为人先 **FGR低氮技术
“的成分主要是,燃气燃烧机,其中既没有氧也没有氮。可当它燃烧温度到1500K以上时,空气中的氮气被氧气氧化,于是产生了氮氧化物。降低氮氧化物排放,控制氧含量是关键,那么怎样可的降低氧的浓度呢?”研发中心的任总监介绍到,“我们经过方案设计--试验测试--反馈调试--调整方案这种不下百次的优化调整,成功将FGR技术应用到燃气锅炉上,并经锅检所现场测试,氮氧化物排放小27mg/m3。
FGR燃烧技术,即烟气再循环技术,是指将锅炉尾部的烟气引入到燃烧器的进风口,与助燃空气混合后,送入燃烧头与燃气混合后再次进行燃烧。原理是抽取一部分燃烧后的低温烟气,通过锅炉再循环的装置与进风口的空气混合,降低燃烧温度, 自然也就降低了氮氧化物的排放浓度了。
排放和效率对于锅炉来说是一对矛盾体,为了排放达到国家标准,又不降低锅炉热效率,研发队伍,通过优化锅炉受热面的设计,在低氮排放的前提下,确保锅炉效率不下降。对锅炉对流受热面进行重新设计,适应FGR的性能特点,对不同燃烧负荷的再循环率进行计算及验证测试,设定对应的锅炉控制程序确保在不同再循环率下的NOx指标及锅炉效率。锅炉排烟口设置氧传感器,实时在线检测烟气中的氧含量,确保高效燃烧。
目前,燃油燃烧机,方快FGR燃气锅炉已经在北京、上海、天津、成都等地广泛安装应用。来自北京的一位FGR燃气锅炉用户表示,他们在更换为方快FGR低氮燃气锅炉后,操作更加简单智能,燃气费用较原来的锅炉每个月节省10万元以上,原来担心成本增加没想到比原来还更省了。
勇于创新 全预混技术排放更低
氮氧化物排放还能不能再低一些呢?在成功研发FGR技术后,方快研发团队又开始了新的课题,勇于挑战,敢于追赶是团队每位成员的品质。
想要降低氮氧化物排放,低温燃烧是另一关键。怎样实现燃烧温度低而热效率不降呢?研发团队到美国、欧洲等国交流学习先进的经验,结合国内实际情况研发出了全预混燃烧技术。
燃烧前与空气均匀充分混合,燃烧时不再需要二次空气。充分的预混合,让炉膛内火焰短,降低了燃烧温度,从而减少了热力型氮氧化物的产生。普通的锅炉,燃烧后一立方烟气里含有大约200mg/m3的氮氧化物。使用全预混技术后,每立方烟气里的氮氧化物可降低到18mg/m3,远远小于国家新排放标准。
全预混燃烧器燃烧时火焰呈蓝色短小且密集,并且表面燃烧均匀,形成很平整的火焰面,火焰充满度好,热量能均匀的散发出去。燃烧热通过辐射和对流换热的方式快速散发,从而有效控制燃烧室的温度分布,避免了燃烧室内的局部高温,使出口处NOX排放大幅度下降,达到同时降低NOX、CO的排放水平。
应用FGR技术和全预混技术的产品,已经锅检院现场测试并颁发报告,氮氧化物排放远低于国家排放标准,利雅路燃烧机,并且经过多行业用户的实际应用得到了众多用户的一致**。
1.更换燃烧器
低氮燃烧改造方式多样,同时技术也相对复杂,改造过程中需要注意这些问题。
对于7.0MW(蒸发量10/t)以上的锅炉不建议采用预混燃烧改造方式
当然还需要注意,对于中心回燃式的锅炉,不建议更换燃烧器的改造方式。
2.烟气进行处理
目前主要有燃料再燃,选择性催化还原法、非选择性催化还原法。但在实际监测中也发现,氮氧化物排放可控性较差。
而采用改善燃烧的技术手段仍是提高能源利用率,控制氮氧化物排放量的主要手段
而FGR(分级燃烧+烟气回流技术)和FPB(预混燃烧技术)则是可供选择的两种主要燃烧方式。而“郑州方快”的低氮锅炉多采用该种方式。
FGR相对优势比较明显,而欧洲地区多采用该方式。能有效降低燃烧温度,同时还可以减少氮氧化物的排放量。其缺点在于需要增加风机的功率。
FPB多在美国比较常见,预先混合空气与燃气,提高燃烧效率,在高密度金属纤维表面均衡燃烧,通过提高空间内氧气含量来减少氮氧化物。当然其缺点就在于雾霾天气情况下容易出现燃烧筒堵塞的问题。
ZNB-W2系列燃气燃烧器简介:
? 燃料和助燃氧气采用独立计量供应,通过PLC分别计算配比,燃烧机,从而使燃烧,效率提高2%。
? 风机可采用变频控制,使年平均电耗下降30%-40%,高抗压能力,适应性更强,火焰更易控制。
? 燃气燃烧器采用气环式雾化,满足低NOx排放。
? 采用分体式结构和整体式结构两种:分体式结构重量轻,有效避免燃烧共振产生应力损坏,安装方式可多变。维护简单方便。整体式结构紧凑,安装和运输方便,适应更苛刻安装环境。
?调节比1:10,启动平稳,温控精度高。
?核心组件采用西门子产品,精度和可靠性更高。